Algorithm runtime prediction: Methods & evaluation

نویسندگان

  • Frank Hutter
  • Lin Xu
  • Holger H. Hoos
  • Kevin Leyton-Brown
چکیده

Perhaps surprisingly, it is possible to predict how long an algorithm will take to run on a previously unseen input, using machine learning techniques to build a model of the algorithm’s runtime as a function of problem-specific instance features. Such models have important applications to algorithm analysis, portfolio-based algorithm selection, and the automatic configuration of parameterized algorithms. Over the past decade, a wide variety of techniques have been studied for building such models. Here, we describe extensions and improvements of existing models, new families of models, and— perhaps most importantly—a much more thorough treatment of algorithm parameters as model inputs. We also comprehensively describe new and existing features for predicting algorithm runtime for propositional satisfiability (SAT), travelling salesperson (TSP) and mixed integer programming (MIP) problems. We evaluate these innovations through the largest empirical analysis of its kind, comparing to a wide range of runtime modelling techniques from the literature. Our experiments consider 11 algorithms and 35 instance distributions; they also span a very wide range of SAT, MIP, and TSP instances, with the least structured having been generated uniformly at random and the most structured having emerged from real industrial applications. Overall, we demonstrate that our new models yield substantially better runtime predictions than previous approaches in terms of their generalization to new problem instances, to new algorithms from a parameterized space, and to both simultaneously.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

Algorithm Runtime Prediction: Methods & Evaluation (Extended Abstract)

Perhaps surprisingly, it is possible to predict how long an algorithm will take to run on a previously unseen input, using machine learning techniques to build a model of the algorithm’s runtime as a function of problem-specific instance features. Such models have many important applications and over the past decade, a wide variety of techniques have been studied for building such models. In th...

متن کامل

Statistical Regimes and Runtime Prediction

The last decade has seen a growing interest in solver portfolios, automated solver configuration, and runtime prediction methods. At their core, these methods rely on a deterministic, consistent behaviour from the underlying algorithms and solvers. However, modern state-of-the-art solvers have elements of stochasticity built in such as randomised variable and value selection, tie-breaking, and ...

متن کامل

Topic 2: Performance Prediction and Evaluation

Parallel computing enables solutions to computational problems that are impossible on sequential systems due to their limited performance. To meet this objective, it is critical that users can both measure performance on a given system and predict the performance for other systems. Achieving high performance on parallel computer systems is the product of an intimate combination of hardware arch...

متن کامل

Automatic Service Composition Based on Graph Coloring

Web services as independent software components are published on the Internet by service providers and services are then called by users’ request. However, in many cases, no service alone can be found in the service repository that could satisfy the applicant satisfaction. Service composition provides new components by using an interactive model to accelerate the programs. Prior to service comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Artif. Intell.

دوره 206  شماره 

صفحات  -

تاریخ انتشار 2014